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We study numerically a Ginzburg-Landau-type equation for micelles in two dimensions. The domain size
and the interface length of a cellular structure are controlled by two feedback terms. The deformation and the
successive splitting of the cellular structure are observed when the controlled interface length is increased. The
splitting instability is further investigated using coupled mode equations to understand the bifurcation structure.
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Complicated chemical reaction in a confined cellular
structure is considered to be an important step to life. Oparin
considered that “coacervate” played an important role in the
origin of a cell in prebiotic chemical evolution �1�. The com-
partmentation by some membrane structure is important for a
cell to be independent of the external atmosphere. We stud-
ied the creation and reproduction of model cells with semi-
permeable membrane �2�. Vesicles and micelles can take a
cellular form and are considered to be a model system of
primitive cells �3,4�. Self-replication of reverse micelles �5�
and vesicles �6,7� by the increase of the number of the mem-
brane molecules were observed in experiments. Various
types of deformation of the cellular structure such as bud-
ding, splitting, and birthing were observed.

On the other hand, the control of spatiotemporal patterns
has been an important topic of nonlinear dynamics. The spi-
ral patterns and the spatiotemporal chaos were controlled by
some feedback mechanisms �8,9�. We studied the control of
domain size in the Ginzburg-Landau-type equation and the
method was applied to the problem of cell differentiation
�10,11�. In this Brief Report, we try to control the interface
length in a Ginzburg-Landau-type model for micelles �12,13�
in two dimensions. We will find a splitting instability of cel-
lular domains in the model. Although the splitting instability
of two-dimensional pulses was observed in the numerical
simulation of the Gray-Scott model �14� and an experiment
of the FIS reaction �15�, it is important from a viewpoint of
artificial cells to study the splitting instability of the cellular
structure in such a micelle model.

Our analysis is based on a free energy functional,

F���r�� =� dr��c/2���2��2 + �1/2�g����2 − �1/2��2

+ �1/4��4 − �� + �1/12�b����4� , �1�

where � denotes an order parameter such as the difference of
oil and water concentrations in a problem of the mixture of
oil, water, and surfactant. The region with a large value of
���� corresponds to the interface region including the surfac-
tant. The surface energy is controlled by parameters g and b.
The larger area �length� of the interface is preferable in case
of negative large values of g and b. A time-dependent
Ginzburg-Landau equation is given by

��

�t
= −

�F

��
= � − �3 + � − c�4� + g�2� + b����2�2� .

�2�

We consider the control of S1=�dr� and S2=�dr����2 in
two dimensions. If c=�=b=0 and g�0, there is a domain
wall solution

� = tanh�x/�2g� . �3�

Then, S1 is proportional to the domain-size difference of do-
mains satisfying �=1 and domains satisfying �=−1, and S2
is approximately expressed as S2	4 / �3�2g�l, where l is the
total length of the interface between the two domains. The
control of S1 and S2 to certain fixed values leads to the con-
trol of the domain size and the interface length. If c, �, and
b are not zero, the above approximation is not always good,
but we call the control of S2 the control of the interface
length in this Brief Report. We control S1 and S2 to certain
fixed values by changing the parameters � and g using the
global negative feedback as

d�

dt
= ��S10 − S1�,

dg

dt
= ��S2 − S20� , �4�

where � is a decay constant for � and g, and S10 and S20 are
target values of S1 and S2. If S1 is larger �smaller� than the
target value S10, � decreases �increases�, which leads to de-
crease �increase� S1. Similarly, S2 is larger �smaller� than the
target value S20, g increases �decreases� and the interface
region decreases �increases�, which leads to decrease �in-
crease� S2. As a result of the negative feedback effect, S1 and
S2 are expected to approach S10 and S20.

We have performed numerical simulation using the pseu-
dospectral method with Fourier modes of 128�128. The
system size is L�L=40�40. We have assumed the integra-
tion range for S1 and S2 as a circular region of radius L /2
=20 for the comparison with the analysis of coupled mode
equations below. We have obtained qualitatively similar re-
sults even if the integration range is assumed to be the total
square region of L�L. The target value S20 is increased
slowly from S20=25 to 325. That is, S20 is stepwise increased
as S20=25+n at t=100n where n is an integer. The initial
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condition is assumed to be �=1 inside of the slightly elliptic
region �x−L /2�2+1.05�y−L /2�2=9, and �=−1 outside of
the region. Figures 1�a�–1�d� show cellular domains, where
��0 is satisfied, at S20=50, 55, 65, and 70 for S10=−1500.
The domain takes a circular form at S20=50. The deforma-
tion to an elliptic form begins at S20	53, which leads to a
dumbbell shape at S20=65 and finally it is split into two
domains at S20	68. The split pattern is observed at S20
=70 in Fig. 1�d�. When S20 is further increased, more cellular
domains appear by the deformation and the splitting. Figure
2�a�–2�c� shows the cellular domains, respectively, at S20
=100, 175, and 275 for S10=−1500. The number of cells
increases stepwise as 3, 4, and 5.

The deformation and the splitting instability of a circular
domain can be approximately expressed by coupled mode
equations. From the direct numerical simulation of Eqs. �2�
and �4�, it is expected that ��r� is approximated at �0�r , t�
+�2�r , t�cos�2��, where r and � are polar coordinates around
the center �L /2,L /2�. The substitution of the approximation
into Eqs. �2� and �4� yields
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= ��S10 − �

0

L/2

dr2	r�0�r�� ,

10

15

20

25

30

10 15 20 25 30

y

x

10

15

20

25

30

10 15 20 25 30

y

x

10

15

20

25

30

10 15 20 25 30

y

x

10

15

20

25

30

10 15 20 25 30

y

x

FIG. 1. Cellular domains satisfying ��0 at �a� S20=50, �b� 55, �c� 65, and �d� 70.
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FIG. 2. Cellular domains satisfying ��0 at �a� S20=75, �b� 100, and �c� 275.
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dg

dt
= ���

0

L/2

dr����0/�r�2

+ �1/2����2/�r�2 + 2�2
2/r2� − S20� . �7�

Note that �2 must behave �2	a2r2+a3r3+¯ near r=0 be-
cause the angle dependence is cos�2��. There exists always a
solution with the circular symmetry satisfying �2=0. Such a
circular solution �0�r� obeys the equations,

��0
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= �0 − �0

3 − �3/2��0�2
2 + � + b� ��0
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� ,

d�

dt
= ��S10 − �

0

r

dr2	r�0�r�� ,

dg

dt
= ���

0

r

dr���0/�r�2 − S20� . �8�

These equations are obtained from Eqs. �5� and �7� by setting
�2 to be zero. The linear stability of the circular solution can
be investigated by the linear equation obtained from Eq. �6�,
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� . �9�

The solid curve in Fig. 3�a� shows the profile of ��x ,y� at
y=L /2 at S10=−1500 and S20=50 for Eqs. �2� and �4�. The
dashed curve in Fig. 3�a� is a stationary solution to Eq. �8�.
The two curves are well overlapped, and the difference is
hardly seen. That is, the approximation by Eq. �8� is good.
Figure 3�b� shows the eigenvalue of the linear Eq. �9� as a
function of S20 for a fixed value of S10=−1500. The instabil-
ity occurs at S20=52, which is consistent with the critical
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FIG. 4. �a� �0�0� as a function of S20 for S10=−1500. �b� Profile of �0�x� �solid curve� and the mirror image for x
0 at S20=85 �solid
curve� and S20=80 �dashed curve�. �c� Deformed domain at S20=80. In the shaded domain, �0�r�+�2�r�cos�2���0. �d� Split domains at
S20=85. In the shaded two domains, �0�r�+�2�r�cos�2���0.
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FIG. 3. �a� Profile of ��x ,y� �solid curve� at y=L /2 for S10=−1500 and S20=50 in Eqs. �2� and �4�. Profile of ��x� by Eq. �8� �r is set
to be x� and the mirror image for x
0 �dashed curve� at the same parameters. The two curves are well overlapped. �b� Eigenvalue for Eq.
�9� as a function of S20 for S10=−1500. �c� Mean amplitude S3 of the perturbation �2�r� as a function of S20 at S10=−1500 for Eqs. �5�–�7�.
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value S20	53 by the direct numerical simulation of Eqs. �2�
and �4�. Figure 3�c� displays S3= ��0

L/2drr�2
2�1/2 as a function

of S20 obtained numerically for Eqs. �5�–�7�. It means that
the supercritical bifurcation occurs at S20	52. That is, the
elliptic deformation grows continuously. The splitting insta-
bility is also approximately described by Eqs. �5�–�7�. Figure
4�a� displays the value �0�0� at r=0 as a function of S20 for
S10=−1500 obtained by numerical simulation of Eqs.
�5�–�7�. A discontinuous transition occurs at S20	82. The
profile of �0�r� has a peak at r=0 for S20
82. On the other
hand, �0�r� has a peak at nonzero r for S20�82 as shown in
Fig. 4�b�. Figure 4�b� displays the profiles of �0�x� at S20
=80 and 85. The discontinuous transition of the profile �0�x�
is clearly seen. Figures 4�c� and 4�d� show the deformation
of the cellular domain at �c� S20=80 and �d� S20=85. In the
shaded regions, �0�r�+�2�r�cos�2���0. The two-peak
structure shown in Fig. 4�b� appears as a two-cell structure in
Fig. 4�d�. The critical value S20	82 in the coupled mode
equations is larger than the critical value S20	68 of the split-
ting instability by the direct numerical simulation by Eqs. �2�

and �4�. It is partly because the higher modes including
cos�2m�� with m�2 is truncated in Eqs. �5�–�7�.

In summary, we have proposed a Ginzburg-Landau-type
model for micelles under the control of the domain size and
the interface length. As the interface length is increased, a
circular cell is deformed to an elliptic form and then split
into two cells. By increasing further the interface length,
many cells are created by the deformation and the splitting
instability. We have proposed coupled two-mode equations
and found that there are two successive bifurcations for the
splitting instability. One is the supercritical bifurcation,
where the circular symmetry is broken continuously. At the
second bifurcation point, the splitting of the cellular structure
occurs discontinuously. In the problem of micelles, we can
interpret that the increase of the interface length corresponds
to the increase of the surfactant materials created by some
chemical reactions inside of the micelles. The splitting pro-
cesses might be interpreted to correspond to the self-
replication process of micelles found in the experiments �5�.

�1� A. I. Oparin, The Origin of Life �Dover, New York, 1952�.
�2� H. Sakaguchi, J. Phys. Soc. Jpn. 78, 014801 �2008�.
�3� P. L. Luisi, The Emergence of Life from Chemical Origins to

Synthetic Biology �Cambridge University Press, Cambridge,
2006�.

�4� H. Hotani, T. Inaba, F. Nomura, S. Takeda, K. Takiguchi, T. J.
Itoh, T. Umeda, and A. Ishijima, Biosystems 71, 93 �2003�.

�5� P. A. Bachmann, P. Walde, P. L. Luisi, and J. Lang, J. Am.
Chem. Soc. 112, 8200 �1990�.

�6� R. Wick, P. Walde, and P. L. Luisi, J. Am. Chem. Soc. 117,
1435 �1995�.

�7� T. Takakura, T. Toyoda, and T. Sugawara, J. Am. Chem. Soc.
125, 8134 �2003�.

�8� V. S. Zykov, A. S. Mikhailov, and S. C. Müller, Phys. Rev.
Lett. 78, 3398 �1997�.

�9� M. Bertram and A. S. Mikhailov, Phys. Rev. E 63, 066102
�2001�.

�10� H. Sakaguchi, Phys. Rev. E 64, 047101 �2001�.
�11� H. Sakaguchi, Phys. Rev. E 79, 051916 �2009�.
�12� M. Teubner and R. Strey, J. Chem. Phys. 87, 3195 �1987�.
�13� G. Gompper and S. Zschocke, Phys. Rev. A 46, 4836 �1992�.
�14� V. Petrov, S. K. Scott, and K. Showalter, Philos. Trans. R. Soc.

London, Ser. A 347, 631 �1994�.
�15� K.-J. Lee, W. D. McCormick, J. E. Pearson, and H. L. Swin-

ney, Nature �London� 369, 215 �1994�.

BRIEF REPORTS PHYSICAL REVIEW E 80, 017202 �2009�

017202-4


